
UNIVERSIDAD NACIONAL DE HUANCAVELICA ESCUELA PROFESIONAL DE INGENIERIA CIVIL -HUANCAVELICA

CURSO: MECÁNICA DE FLUIDOS II

UNIDAD II

Sistema de tuberías - Método de HARDY CROSS

8.- Redes cerradas:

Conocidas también como sistemas con circuitos cerrados o ciclos. Su característica primordial es tener algún tipo de circuito cerrado (loop, en inglés) en el sistema. El objetivo es tener un sistema redundante de tuberías: cualquier zona dentro del área cubierta por el sistema puede ser alcanzada simultáneamente por más de una tubería, aumentando así la confiabilidad del abastecimiento. Es éste el tipo de red que usualmente conforma el sistema de distribución de agua potable de una ciudad.

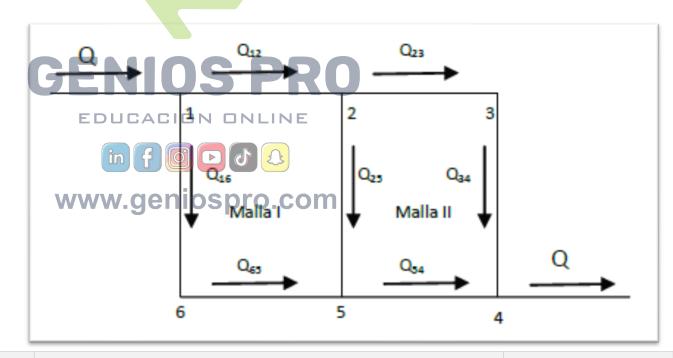
Análisis de redes de tuberías : Redes Cerradas

- ■Método de Hardy Cross
 - Con corrección de caudales en las mallas.
 - Con corrección de cabezas en los nudos.
- ☐ Método de Newton Raphson
- Método de la teoria linea www.geniospro.com
- Método del gradiente hidráulico

El cálculo de redes es en esencia una comprobación de diseño y no un diseño en sí.

MÉTODOS DE HARDY – CROSS CON CORRECCIÓN DE CAUDALES.

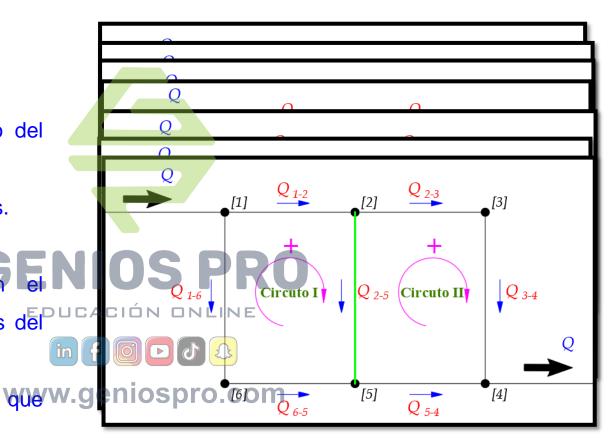
Este método fue desarrollado por el ingeniero norteamericano H. Cross 1936. El método original se basa en **suponer los caudales en cada uno de los tubos de la red e ir corrigiendo esta suposición.** Dado que todas las características de la tubería (d, ks, \sum Km, l), se conocen, el método es un proceso de comprobación de diseño (Saldarriaga).


Es un método de aproximaciones sucesivas por el cual se realizan correcciones sistemáticas a los caudales originalmente asumidos (caudales de tránsito por las tuberías) hasta que la red se encuentre balanceada.

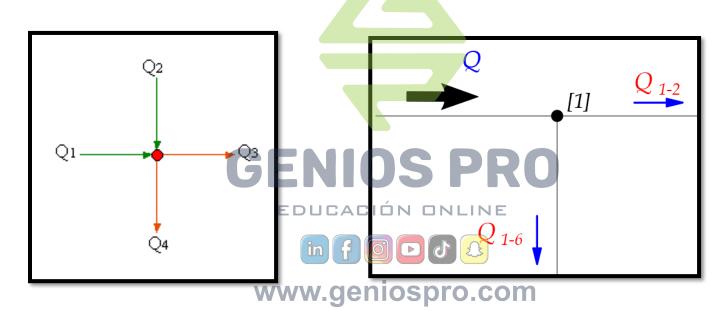
www.geniospro.com

El cálculo de las redes es laborioso y se hace por el método de aproximaciones sucesivas (tanteo) diseñado por Hardy Cross.

Sobre un croquis de la red se hace una distribución razonable de caudales (supuestos por quien realiza el cálculo) dibujando con flechas los sentidos estimados. Importa también anotar una numeración arábiga consecutiva en los nodos y números romanos en las mallas que componen la red. Algunas mallas comparten una tubería, tal como puede verse en el ramal 2-5 que es común a las mallas I y II de la figura que se muestra en la siguiente diapositiva.


Red mostrando nodos (números arábigos) y mallas (números romanos)

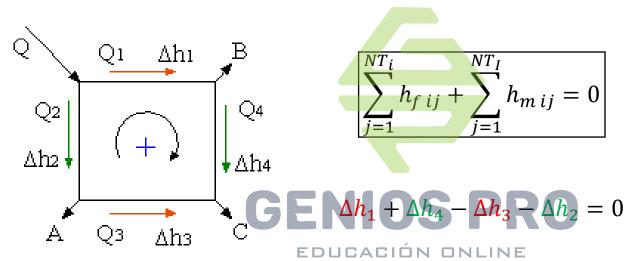
MECANICA DE FLUIDOS II UNIVERSIDAD NACIONAL DE HUANCAVELICA 5


PROCEDIMIENTOS PRELIMINARES

- 1. Enumerar los nodos.
- 2. Pre-establecer el sentido del flujo.
- 3. Asumir gastos en tuberías.
- 4. Definir los circuitos.
- 5. Definir el recorrido en el sentido de las manecillas del reloj.
- 6. Identificar tuberías comparten las mallas.

a.- Condición en los nudos.

En un nudo cualquiera de una red cerrada, la sumatoria de caudales que entran (afluentes +) a un nudo es igual a la suma de caudales que salen (efluentes -).



$$\sum_{j=1}^{NT_i} Q_{ij} = \sum_{l=1}^{NT_D} Q_{DI}$$

$$\sum_{j=1}^{NT_i} Q_{ij} - Q_{Dl} = 0$$

b.- Condición en las tuberías.

La suma de perdidas a través de una red cerrada es igual a cero.

donde NT i . es el número de tubos del circuito i.

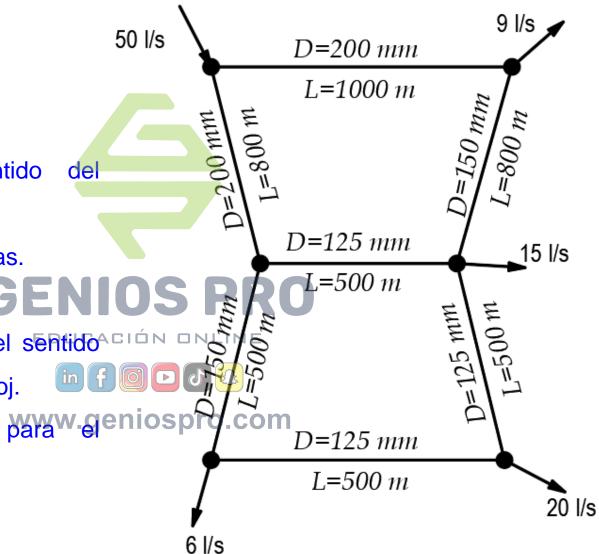
Usando H – W se demuestra. Darcy. se demuestra.

$$\Delta Q = \frac{-\sum h f_a}{1.851 \sum \left(\frac{h f_a}{Q_a}\right)}$$
 www.geniospro ΔQ $\frac{-\sum h f_a}{2 \sum \left(\frac{h f_a}{Q_a}\right)}$

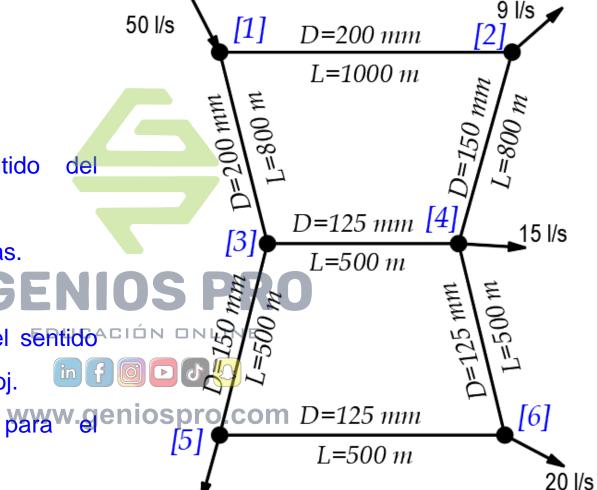
Hazen - Williams

$$Hf_{loc} = \underbrace{10.679}_{C^{1.852}} \times \underbrace{L}_{D^{4.87}} \times Q^{1.852}$$

$$Hf = \frac{fLV^2}{2gD}$$


EJERCICIO APLICATIVO

La red mostrada en la figura tiene la geometría que se indica y a ella llegan y salen los gastos también mostrados. Los tubos son de acero. Determine los gastos en cada

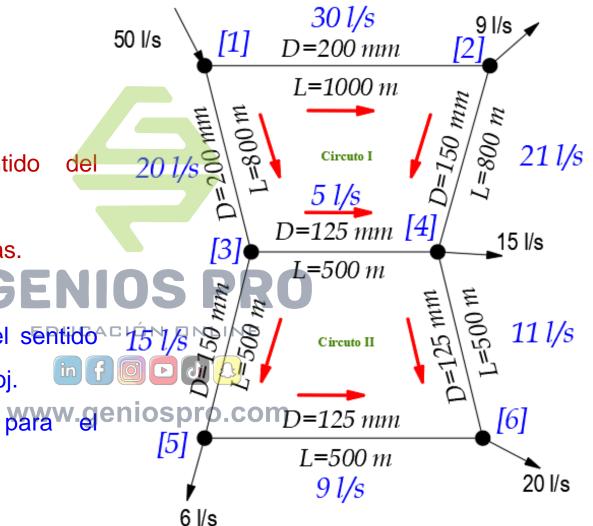


tramo.

- 1. Enumerar los nodos.
- 2. Pre-establecer el sentido flujo.
- 3. Asumir gastos en tuberías.
- 4. Definir los circuitos.
- 5. Definir el recorrido en el sentido de las manecillas del reloj.
- Construir una tabla para ele calculo iterativo.

- 1. Enumerar los nodos.
- 2. Pre-establecer el sentido flujo.
- 3. Asumir gastos en tuberías.
- 4. Definir los circuitos.
- 5. Definir el recorrido en el sentido de las manecillas del reloj.
- 6. Construir una tabla para el calculo iterativo.

6 l/s


- Enumerar los nodos.
- 2. Pre-establecer el sentido flujo.
- Asumir gastos en tuberías.
- de las manecillas del reloj.
- Construir tabla una calculo iterativo.

- Enumerar los nodos.
- 2. Pre-establecer el sentido flujo.
- Asumir gastos en tuberías.
- Definir los circuitos.
- de las manecillas del reloj.
- Construir tabla una calculo iterativo.

- 1. Enumerar los nodos.
- 2. Pre-establecer el sentido flujo.
- 3. Asumir gastos en tuberías.
- 4. Definir los circuitos.
- 5. Definir el recorrido en el sentido de las manecillas del reloj.
- 6. Construir una tabla calculo iterativo.

- 1. Enumerar los nodos.
- Pre-establecer el sentido flujo.
- 3. Asumir gastos en tuberías.
- 4. Definir los circuitos.
- 5. Definir el recorrido en el sentido de las manecillas del reloj.
- Construir una tabla calculo iterativo.

6.- Construir una tabla para el calculo iterativo.

Datos:

Tubería de acero C= 130

Tabla de coeficientes de Hazen-Williams							
Material	Coeficiente de Hazen-Williams						
Asbesto-cemento (nuevo)	135						
Cobre y Latón	130						
Ladrillo de saneamiento	100						
Hierro fundido, nuevo	130						

ECUACIÓN DE HAZEN-WILLIAMS S PRO

N=1.851

Hazen - Williams

Hf
$$_{loc} = 10.679 \times L \times Q^{1.852}$$
 $C^{1.852}$
 $C^{1.852}$
 $C^{1.852}$
 $C^{1.852}$
 $C^{1.852}$

$$Hf_{ij} = a_{ij}Q_{ij}^N$$

$$a_{ij} = \frac{L_{ij}}{\left(0.279C_{Hij}D_{ij}^{2.63}\right)^N}$$

Formulación de Corrección de caudales:

$$\Delta Q = -\frac{\sum_{1}^{k} (Hf)}{N \sum_{1}^{k} \left(\frac{Hf}{Qij}\right)}$$

$$\Delta Q = \frac{-\sum H f_a}{1.851 \sum \left(\frac{h f_a}{Q_{i,i}}\right)}$$

$$Hf_{ij} = a_{ij}Q_{ij}^N$$

$$Hf_{ij} = a_{ij}a_{ij} |Q_{ij}|^{N-1} Q_{ij}$$

Reemplazando perdida de carga por método de H-W

$$\Delta Q = \frac{-\sum a_{ij} Q_{ij}^N}{1.851 \sum \left(\frac{a_{ij} Q_{ij}^N}{Q_{ij}}\right)}$$

 $\Delta Q = \frac{-\sum a_{ij} Q_{ij}^{N} Q_{ij}^{-1} Q_{ij}}{N \sum (a_{ij} Q_{ij}^{N} Q_{ij}^{-1})} \qquad \text{in for all } Q_{ij}^{N} Q_{ij}^{-1} Q_{ij}^{N} Q_{ij}^{-1} Q_{ij}^{N} Q_{ij}^{-1} Q_{ij}^{-1} Q_{ij}^{N} Q_{ij}^{N} Q_{ij}^{-1} Q_{ij}^{N} Q_{$

www.geniospro.com

Configuración de caudales

$$\Delta Q = -\frac{\sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} Q_{ij} \right)}{N \sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} \right)}$$

$$\Delta Q = -\frac{\sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} Q_{ij} \right)}{N \sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} \right)}$$

50 l/s

[1]

[3

15 l/s 1/s =

21 l/s

15 l/s

11 l/s

[=500 m

6.1.- Datos de los circuitos

Circuito	Tramo	D (m)	L (m)
	1-2	0.200	1000
,	2-4	0.150	800
'	4-3	0.125	500
	3-1	0.200	800
			•
	4-6	0.125	500
П	6-5	0.125	500
11	5-3	0.150	500
	3-4	0.125	500

6.2.- Calculamos el factor "a"

$$a_{ij} = \frac{L_{ij}}{\left(0.279C_{Hij}D_{ij}^{2.63}\right)^{N}}$$
EDUCACIÓN ONLÍNE 91/s 20 Vs

www.geniospro

6.3.- En el primer circuito y la

primera tubería 1-2

$$a_{I;1} = \frac{\mathbf{1000}}{(0.279 * 130 * \mathbf{0.2}_{1}^{2.63})^{1.852}}$$

$$a_{I;1} = 3280.61$$

$$a_{I;2} = \frac{800}{(0.279 * 130 * \mathbf{0.15}_{1}^{2.63})^{1.852}}$$

🚱.- En el primer circuito y la

segunda tubería 2-4

30 l/s D=200 mm

L=1000 m

D=125 mm [4]

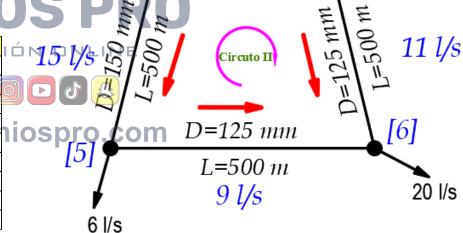
L=500 m

$$a_{I:2} = 10647.86$$

9 l/s

6.4.- Calculamos los valores de "a" para todo el sistema

Circuito	Tramo	D (m)	L (m)	a
	1-2	0.200	1000	3280.61
ı	2-4	0.150	800	10647.86
'	4-3	0.125	500	16166.16
	3-1	0.200	800	2624.49
	4-6	0.125	500	16166.16
11	6-5	0.125	500	16166.16
11	5-3	0.150	500	6654.91
	3-4	0.125	500	16166.16


21 l/s

15 l/s

6.5.- Caudales asumidos inicialmente

GENIOS

Circuito	Tramo	D (m)	L (m)	a _E	Q (m3/s)
	1-2	0.200	1000	3280.61	0.03
	2-4	0.150	800	10647.86	0.021
'	4-3	0.125	500	16166.16	-0.005
	3-1	0.200	800	2624.49	-0.02
				VVV	vw.gei
	4-6	0.125	500	16166.16	0.011
11	6-5	0.125	500	16166.16	-0.009
II	5-3	0.150	500	6654.91	-0.015
	3-4	0.125	500	16166.16	0.005

30 l/s

 $D = 200 \ mm$

 $L=1000 \ m$

D=125 mm [4]

L=500 m

[1]

6.6.- Perdidas de carga "H"

$$H_{ij} = a_{ij} Q_{ij}^N$$

6.7.- Para el primer circuito y la primera tubería 1-2

$$H_{I;1} = 3280.61 * \mathbf{0.03}_{I;1}^{1.851}$$

$$H_{I:1} = 4.9786 m$$

6.7.- Para el primer circuito y la segunda tubería 2-4

$$H_{I;1} = 10647.86 * 0.021_{I;2}^{1.851}$$

$$H_{I:2} = 8.3501 m$$

6.8.- Para cada tubería y circuito NIOS PRO

Circuito	Tramo	D (m)	L (m)	F _a D U	Q (m3/s)	H (m)	ΙE
	1-2	0.200	1000	3280.61	0.03	4.9786	
	2-4	0.150	800	10647.86	0.021	8.3501	
'	4-3	0.125	500	16166.16	-0.005	-0.8900	
	3-1	0.200	800	\2624.49\/	Q -0.02 O	S-1.8804 (on
)		
	4-6	0.125	500	16166.16	0.011	3.8302	
11	6-5	0.125	500	16166.16	-0.009	-2.6419	
11	5-3	0.150	500	6654.91	-0.015	-2.7995	
	3-4	0.125	500	16166.16	0.005	0.8900	

6.9.- Caudales perdidas de carga "∆Q"

$\Delta Q = -\frac{\sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} Q_{ij} \right)}{N \sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} \right)}$

6.9.1.- Primer componente

$$\Delta Q = -\frac{\sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} Q_{ij} \right)}{N \sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} \right)}$$

Circuito	Tramo	D (m)	L (m)	а	Q (m3/s)	H (m)	a* Q ^N-1
	1-2	0.200	1000	3280.61	0.03	4.9786	165,9528
	2-4	0.150	800	10647.86	0.021	8.3501	397.6225
'	4-3	0.125	500	16166.16	-0.005	-0.8900	178.0043
	3-1	0.200	800	2624.49	-0.02	-1.8804	94.0201
	4-6	0.125	500	16166.16	0.011	3.8302	348.2027
l II	6-5	0.125	500	16166.16	-0.009	-2.6419	293.5400
"	5-3	0.150	500	6654.91	-0.015	-2.7995	186.6362
	3-4	0.125	500	16166.16	0.005	A 0.8900N	□ 178.0043 E

a.- Para el primer circuito y

la primera tubería 1-2

$$\left(a_{ij}|Q_{ij}|^{N-1}\right)$$

 $(3280.61 * |0.03|^{1.851-1})$

165.95

Para el primer circuito y la www.geniosprogunda tubería 2-4

$$\left(a_{ij}|Q_{ij}|^{N-1}\right)$$

 $(10647.86 * |0.021|^{1.851-1})$

397.6225

6.9.2.- Segundo componente

$$\Delta Q = -\frac{\sum_{1}^{k} \left(\boldsymbol{a_{ij}} | \boldsymbol{Q_{ij}} |^{N-1} \boldsymbol{Q_{ij}} \right)}{N \sum_{1}^{k} \left(\boldsymbol{a_{ij}} | \boldsymbol{Q_{ij}} |^{N-1} \right)}$$

Circuito	Tramo	D (m)	L (m)	а	Q (m3/s)	H (m)	a* Q ^N-1	a*Q* Q ^N-1
	1-2	0.200	1000	3280.61	0.03	4.9786	165.9528	4.9786
,	2-4	0.150	800	10647.86	0.021	8.3501	397.6225	8.3501
!	4-3	0.125	500	16166.16	-0.005	-0.8900	178.0043	-0.8900
	3-1	0.200	800	2624.49	-0.02	-1.8804	94.0201	-1.8804
	4-6	0.125	500	16166.16	0.011	3.8302	348.2027	3.8302
11	6-5	0.125	500	16166.16	-0.009	-2.6419	293.5400	-2.6419
11	5-3	0.150	500	6654.91	-0.015	-2.7995	186.6362	-2.7995
	3-4	0.125	500	16166.16	0.005	0.8900	178.0043	0.8900

a.- Para el primer circuito y la primera tubería 1-2

$$\left(a_{ij}|Q_{ij}|^{N-1}Q_{ij}\right)$$

www.geniospr
$$\left(a_{ij}^{O}|Q_{ij}^{m}|^{N-1}Q_{ij}\right)$$

$$(3280.61 * |0.03|^{1.851-1} * 0.03)$$

$$\left(10647.86*|0.021|^{1.851-1}*0.021\right)$$

4.9786

8.3501

EDUCACIÓN ONLINE Para el primer circuito y la

Jsegunda tubería 2-4

6.9.- Caudales perdidas de carga "△Q"

$$\Delta Q = -\frac{\sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} Q_{ij} \right)}{N \sum_{1}^{k} \left(a_{ij} |Q_{ij}|^{N-1} \right)}$$

Reemplazando valores para el primer circuito

$$\Delta Q = -\frac{4.9786 + 8.3501 - 0.89 - 1.8804}{1.851(165.9528 + 397.62 + 178.0 + 94.0201)}$$

 $\Delta Q = -0.0068$

GENIOS PRO

Circuito	Tramo	D (m)	L (m)	a	Q (m3/s)	H (m)	a* Q ^N-1	a*Q* Q ^N-1	ΔQ (m)
	1-2	0.200	1000	3280.61	0.03	4.9786	165.9528	4.9786	-0.0068
	2-4	0.150	800	10647.86	0.021	8.3501	397. <mark>6225</mark>	8.3501	-0.0068
'	4-3	0.125	500	16166.16	-0.005	-0.8900	178.0043	-0.8900	-0.0068
	3-1	0.200	800	2624.49	-0.02	-1.8804 S	94.0201	1.8804	-0.0068
							835.5997	10.5582	-0.0273
	4-6	0.125	500	16166.16	0.011	3.8302	348.2027	3.8302	0.0004
l II	6-5	0.125	500	16166.16	-0.009	-2.6419	293.5400	-2.6419	0.0004
"	5-3	0.150	500	6654.91	-0.015	-2.7995	186.6362	-2.7995	0.0004
	3-4	0.125	500	16166.16	0.005	0.8900	178.0043	0.8900	0.0004
							1006.3832	-0.7212	0.0015

6.10.- Consideraciones en las tuberías que comparten los circuitos

TRAMOS QUE SE REPITAN Multiplicar con signo negativo

Circuito	Tramo	D (m)	L (m)	a	Q (m3/s)		a* Q ^N-1	a*Q* Q ^N-1	ΔQ (m)	Otros	uitos
	1-2	0.200	1000	3280.61	0.03	.9786	165.9528	4.9786	-0.0068		
	2-4	0.150	800	10647.86	0.021	8.3501	397.6225	8.3501	-0.0068		
'	4-3	0.125	500	16166.16	-0.005	-0.8900	178.0043	-0.8900	-0.0068		-0.0004
	3-1	0.200	800	2624.49	-0.02	-1.8804	94.0201	-1.8804	-0.0068 \	1	
							835.5997	10.5582	-0.0273		
	4-6	0.125	500	16166.16	0.011	3.8302	348.2027	3.8302	0.0004	X	
II	6-5	0.125	500	16166.16	-0.009	-2.6419	293.5400	-2.6419	0.0004		
"	5-3	0.150	500	6654.91	-0.015	-2.7995	186.6362	-2.7995	0.0004	*	
	3-4	0.125	500	16166.16	0.005	0.8900	178.0043	0.8900	0.0004		0.0068
					EDIIC	ACIÓN	1006.3832	-0.7212	0.0015		

w.geniospro.com

Multiplicar con signo negativo

6.11.- Corrección de caudales en los circuitos

a.- Para el primer circuito y

la primera tubería 1-2

$$Q_{corregido} = Q_a + \Delta Q$$

$$Q_{corregido} = 0.03 - 0.0068$$

$$Q_{corregido} = 0.0232 \, m3/s$$

b.- Para el primer circuito y

la cuarta tubería 1-3

$$Q_{corregido} = Q_a + \Delta Q + otros Circuitos$$

$$Q_{corregido} = -0.005 - 0.0068 - 0.0004$$

$$Q_{corregido} = -0.0122 \, m3/s$$

Q (m3/s)	H (m)	a* Q ^N-1	a*Q* Q ^N-1	ΔQ (m)	Otros Circuitos	Q (m3/s)
0.03	4.9786	165.9528	4.9786	-0.0068		0.0232
0.021	8.3501	397.6225	8.3501	-0.0068		0.0142
-0.005	-0.8900	178.0043	-0.8900	-0.0068	-0.0004	-0.0122
-0.02	-1.8804	94.0201	-1.8804	-0.0068		-0.0268
		835.599 ⁷ D l	10.5582 ON	-0.0273		
0.011	3.8302	348.2027	f3.8302	0.0004		0.0114
-0.009	-2.6419	293.5400	-2.6419	0.0004		-0.0086
-0.015	-2.7995	186.6362	/.ge _{2.799} spr	0.0004		-0.0146
0.005	0.8900	178.0043	0.8900	0.0004	0.0068	0.0122
		1006.3832	-0.7212	0.0015		

LA SUMATORIA DE ΔQ del circuito es igual a cero en cada circuito.

6.12.- Iniciar desde el paso "6.6" hasta "6.11" SEGUNDA ITERACIÓN

					2
H (m)	a* Q ^N-1	a*Q* Q ^N-1	ΔQ (m)	Otros Circuitos	Q (m3/s)
3.0872	133.2187	3.0872	0.0005		0.0236
4.0333	284.5602	4.0333	0.0005		0.0146
-4.6488	380.6329	-4.6488	0.0005	0.0016	-0.0101
-3.2383	120.7118	-3.2383	0.0005		-0.0264
-0.7667	919.1236	-0.7667	0.0018		
4.0835	358.6043	4.0835	-0.0016		0.0098
-2.4354	282.7599	-2.4354	-0.0016		-0.0102
-2.6673	182.5292	-2.6673	-0.0016		-0.0162
4.6488	380.6329	4.6488	-0.0016	-0.0005	0.0101
3.6297	1204.5263	3.6297	-0.0065		

TERCERA ITERACIÓN

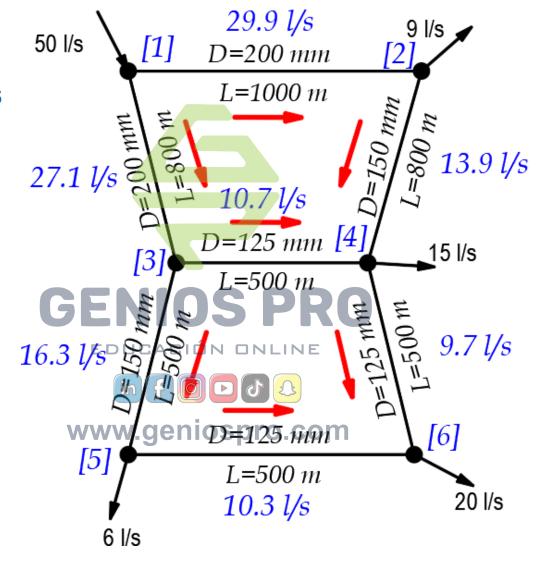
			,		3
H (m)	a* Q ^N-1	a*Q* Q ^N-1	^	Otros Circuitos	Q (m3/s)
3.1992	135.4201	3.1992	-0.0006		0.0230
4.2738	292.2413	4.2738	-0.0006	2.5	0.0140
-3.2914	324.7563	-3.2914	-0.0006	-0.0001	-0.0109
-3.1383	118.9840	-3.1383	-0.0006	10.0011	-0.0270
1.0434	871.4018	1.0434	-0.0026		
3.0691	314.4831	3.0691	0.0001		0.0099
-3.3553	327.6440	-3.3553	0.0001		-0.0101
-3.2432	199.6963	-3.2432	0.0001		-0.0161
3.2914	324.7563	3.2914	0.0001	0.0006	0.0109
-0.2381	1166.5796	-0.2381	0.0004		

DUODECIMA ITERACIÓN

					12
H (m)	a* Q ^N-1	a*Q* Q ^N-1	∆Q (m)	Otros Circuitos	Q (m3/s)
3.0316	132.1117	3.0316	0.0000		0.0229
3.9150	280.6922	3.9150	0.0000		0.0139
-3.6577	340.9004	-3.6577	0.0000	0.0000	-0.0107
-3.2890	121.5771	-3.2890	0.0000		-0.0271
0.0000	875.2815	0.0000	0.0000000		
3.0214	312.2281	3.0214	0.0000		0.0097
-3.4054	329.8801	-3.4054	0.0000		-0.0103
-3.2737	200.5559	-3.2737	0.0000		-0.0163
3.6577	340.9004	3.6577	0.0000	0.0000	0.0107
0.0001	1183.5645	0.0001	0.0000		

DECIMO TERCERA ITERACIÓN NIOS PRO

		Е	DUCAC	IÓN ON	LINE 13
H (m)	a* Q ^N-1	a*Q* Q ^N-1	ΔQ (m)	Otros Circuitos	Q (m3/s)
3.0316	132.1117	3.0316	0.0000		0.0229
3.9150	280.6924	3.9150	0.0000		0.0139
-3.6576	340.8995	-3.6576	0.0000	0.0000	-0.0107
-3.2890	121.5771	-3.2890	0.0000	позрі	-0.0271
0.0000	875.2806	0.0000	0.0000000		
3.0214	312.2273	3.0214	0.0000		0.0097
-3.4054	329.8809	-3.4054	0.0000		-0.0103
-3.2737	200.5562	-3.2737	0.0000		-0.0163
3.6576	340.8995	3.6576	0.0000	0.0000	
0.0000	1183.5638	0.0000	0.0000		

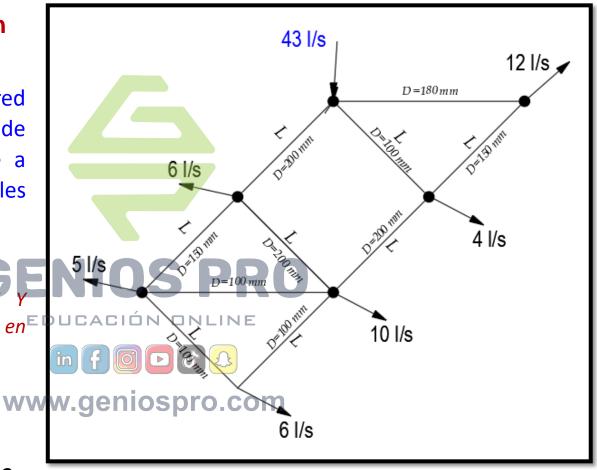

LA SUMATORIA

DE ΔQ del

circuito es igual a

cero.

RESULTADOS FINALES



EJERCICIOS 01 - TRABAJO Nº 03

a.- Empleando la ecuación de H- W o D-W

Verificar los caudales en la red de distribución cerrada de conducción de agua potable a temperatura 12 °C, el materiales de las tuberías son de PVC.

Las longitudes "L = (NOMBRE Y APELLIDOS)***55**" (unidades en^E metros)

Fecha entrega 29-10-2021 11:59 pm

Realizar las grafica de resultados de velocidades, caudales y sentido del flujo en la red.

29

www.goniosnro.co

MECANICA DE FLUIDOS II UNIVERSIDAD NACIONAL DE HUANCAVELICA 30